「q」

記事数:(2)

画質

動画の画質劣化を防ぐには?量子化ノイズを理解しよう!

音を伝える電話や、景色を写し取る写真、動きのある映画など、私たちの身の回りにはたくさんの情報を伝える手段があります。これらの多くは、もともと滑らかに変化する値で表現されています。例えば、マイクで拾った音の大きさや、フィルムに焼き付けられた光の強さは、連続的に変化する値です。このような滑らかに変化する情報を「類推的な信号」と言います。一方、コンピュータは数値で情報を処理します。数値は飛び飛びの値なので、滑らかに変化する「類推的な信号」をコンピュータで扱うには、階段状の値に変換する必要があります。この変換を「量子化」と言い、量子化によって得られた信号を「数値的な信号」と言います。「数値的な信号」は、階段の段のように、飛び飛びの値しか取ることができません。この変換の過程で、どうしても「類推的な信号」と「数値的な信号」の間に誤差が生じます。滑らかな曲線を階段状の線で近似する時、どうしても曲線と直線の間に隙間ができます。音の大きさであれば、この隙間は耳障りな雑音として聞こえます。映像であれば、色の変化が滑らかでなくなり、画質が落ちて見えてしまいます。これが「量子化雑音」です。「量子化雑音」は、「類推的な信号」を「数値的な信号」に変換する際に必ず発生するため、完全に無くすことはできません。雑音を小さくするには、階段の段数を増やす、つまり、より細かい間隔で値を表現できるようにする必要があります。しかし、段数を増やすほど、扱うデータの量も増え、コンピュータの処理に負担がかかります。したがって、「量子化雑音」を許容できる範囲に抑えつつ、データ量も適切な範囲に収める調整が重要になります。「量子化雑音」は、便利な「数値的」な世界と、豊かな表現力を持つ「類推的」な世界の橋渡しをする際に、私たちが支払う代償と言えるでしょう。
規格

量子化:デジタル動画の基礎知識

動画を計算機で扱うには、まず動画の情報を計算機が理解できる形に変換する必要があります。動画はもともと連続的に変化する信号で記録されていますが、計算機は飛び飛びの値しか扱うことができません。この連続的な値を飛び飛びの値に変換する過程全体をデジタル化と言い、その中でも特に重要な処理が量子化です。量子化を説明するのに、体温計を例に考えてみましょう。体温計の水銀柱は、体温の上昇とともに滑らかに上昇します。これは連続的な値の変化です。しかし、私たちが体温を読み取る際には、目盛りの値で表します。例えば、36.7度や36.8度といった具合です。水銀柱の高さという連続的な値を、最も近い目盛りの値という飛び飛びの値で表す、この作業が量子化です。動画もこれと同じように、明るさや色の情報は連続的な値で表現されます。例えば、空の色は場所や時間によって微妙に変化しますが、これらの微妙な変化全てを計算機で扱うのは大変です。そこで、量子化によってこれらの連続的な値を飛び飛びの値に変換します。具体的には、色の情報を赤、緑、青の三原色の組み合わせで表し、それぞれの色の強さを0から255までの整数で表現します。256段階に分けられた各段階を代表する値で、本来の色を近似的に表現するのです。量子化を行う際に重要なのが、何段階で表現するかという点です。段階数が多ければ色の変化を滑らかに表現できますが、データ量も大きくなります。逆に段階数が少なければデータ量は小さくなりますが、色の変化が滑らかではなくなり、階段状の模様が現れることがあります。このように、量子化はデータ量と画質のバランスを見ながら適切な段階数を選ぶ必要があります。動画制作において、高画質を維持しつつファイルサイズを抑えるためには、量子化の理解が欠かせません。